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Let A be an operator algebra, that is a closed subalgebra of the algebra
B(H) of all bounded operators on a Hilbert space H. We shall discuss some
homological conditions on A that garantee the best possible, in some reason-
able sense, structure of A. As a sample, we take the classical Wedderburn
theorem that in the modern language can be formulated as follows.

Let A be an algebra of operators acting on a finite-dimensional linear space
H. Then there are decompositions H = @{H, :v € A} and H, = H Q H"
such that A consists of all operators such that all H, are their invariant
subspaces and such that their respective restrictions have the form a ® 1,
where a acts on H).

With the establishment of functional analysis some people and notably
von Neumann began to be interested in possible functional-analytic general-
izations of this theorem. This interest was one of the main impulses that led
von Neumann to discover what we call now "von Neumann algebras”.

The desired property of an algebra which could participate in the proper
generalization of Wedderburn theorem is evidently as follows. Let now H
be an arbitrary Hilbert space. We call an operator algebra on H Wedder-
burn operator algebra if there exist decompositions into the Hilbert sum and
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Hilbert tensor products, similar to the indicated before (now with, generally
speaking, infinite-dimensional Hilbert spaces and an arbitrary cardinality of
A) such that A consists of all bounded operators of the indicated form.

It is known that at the beginning of 30-es von Neumann supposed that
Wedderburn algebras are just von Neumann algebra with discrete (i.e., iso-
morphic to [(+)) center. But in 1935, jointly with Murrey, he found an
example of an algebra with (even) scalar center which is not Wedderburn
(and, in fact, behaves very differently from Wedderburn algebras). Now, in
retrospective, we know that it was one of major mathematical discoveries of
this century.

Nevertheless, the problem of characterizing Wedderburn algebras re-
mained. In the course of this century,at first in pure algebra and then in
functional ansalysis, the tradition, now quite time-honoured, was gradually
established: to study rings and algebras by what is called know homological
methods. In particular, the homological property of projectivity came to the
forefront. The most known theorem of that kind, again giving us a sample,
can be formulated as follows. Let A be an algebra with projective modules and
bimodules. Then it is finite-dimensional and semi-simple. (In particular, for
a selfadjoint operator algebra this implies that it is Wedderburn).

But how should we distinguish general, not necessarily finite-dimensional,
Wedderburn algebras? In a paper of 1994, we suggested to consider the so-
called spatially projective algebras (see below). It was shown that such a
property distinguishes a rather wide class of Wedderburn algebras but not
all of them. Namely, we obtain only the so-called essentially finite algebras,
that is such Wedderburn algebras that in the indicated decomposition of H,
we have, for any v € A, that at least one of respective Hilbert factors is
finite-dimensional. -

Thus this attempt to characterize Wedderburn algebras, which have used
traditional concepts of Banach homology, had a partial success. Meanwhile
during last 20 years the new rapidly developping branch of functional anal-
ysis appeared, what is now called quantized functional analysis (or, more
prosaically, theory of operator spaces). The leading figures on this area,
notably Effros, Paulsen and Blecher, after "quantizing” Banach spaces, be-
gan to quantize algebras, modules and eventually homology. In particular,
Paulsen suggested about 1996 the quantized version of a traditional notion
of a Banach projective module. From this one immedeately can derive the
respective quantized version of a notion of spatial projectivity. And this
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happened to be quite what we needed: at the end of last (1998) year we
have proved that "quantum spatially projective” operator algebras are ex-
actly Wedderburn algebras, without any additional conditions. That was, in
a sense, the end of the story.

Now, after this outline, we shall give precise definitions and formulations.

Let A be a (so far arbitrary) Banach algebra. In what follows “A-module”
always means a left Banach module over A. Recall that a continuous linear
operator ¢ : X — Y between two A-modules is called a morphism if p(a-z) =
a-¢(z)forall a € A,z € X. A surjective morphism is called admissible if it
has a right inverse continuous linear operator.

Definition. (1970). An A-module P is called projective or, to be precise,
traditionally projective if, for any admissible surjective morphismo : X = Y
between A-modules and for any morphism ¢ : P € Y there exists a morphism
¥ : P — X such that i) = ¢. An operator algebra A on a Hilbert space
H is called spatially projective, if H, as the spatial A-module (i.e. with the
outer multiplication a - z := a(z)) is projective.

To present the quantum version of this concept, we need several basic
definitions of quantized functional analysis. First of all, for a linear space E,
a norm in Mo ® £ = M (E), where M., is the algebra of infinite (to the
right and to below) matrixes with the finite number of non-zero entries, is
called a matriz-norm in E. A matrix-norm in a Banach space E is called
a quantization if it is obtained with the following procedure. At first we
take an (arbitrary) isometrical embedding of E into B(H) for some H, then
take the respective injective map of My ® E into My, ® B(H)) and finally,
identifying the latter space with the respective subspace in B(l, ® H), we
supply Mo ® E) with the induced norm. (We emphasize that different initial
isometrical embeddings provide, generally speaking, different quantizations
of the same Banach space). A Banach space, endowed with a quantization,
is called a quantum Banach space.

Any operator algebra has the so-called standard quantization, provided by
its natural embedding into respective B(H). As to many useful quantizations
of a given Hilbert space H, we shall need here only the following, the so-called
column quantization. It is provided by the embedding H into B(H), taking
z € H to the rank-one operator y — (y, e)z where e is a fixed normed vector
in, H, _

An operator ¢ : £ — F between two quantum spaces is called completely
bounded if the operator 1 ® ¢ : M,, ® E — M., @ F is bounded. A bilinear
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operator ¢ : E x ' — G between three quantum spaces is called completely
bounded if the bilinear operator from M., QF)x M, ® to M®G, well-defined
by (a®z,6®y) — ab® ¢(z,y), is bounded. A Banach algebra, endowed
with a quantization, is called a quantum algebra if its multiplication is, as a
bilinear operator, completely bounded. Finally, if a module over a quantum
algebra is endowed with a quantization, it is called a gquantum module if its
outer multiplication is, as a bilinear operator, completely bounded.

It is easy to check that the spatial module over an operator algebra with
the standard quantization is a quantum module if we endow it with the
column quantization. This quantum module will be called standard spatial
module.

Let A be a quantum algebra. A completely bounded (as an operator)
morphism between two quantum A-modules is called quantum admissible if
it has a right inverse completely bounded operator.

Definition. A quantum A-module P is called quantum projective if, for
any quantum admissible surjective morphism ¢ : X — Y between quantum
A-modules and for any completely bounded morphism ¢ : P € Y there exists
a completely bounded morphism ¢ : P — X such that o¢» = . An operator
algebra, endowed with the standard quantization, is called quantum spatially
projective, if its standard spatial module is projective.

Now we are able to formulate our main result.

Theorem. Let A be a von Neumann algebra. Then

(1) A is traditionally spatially projective iff it is Wedderburn and essen-
tially finite.

(ii) A is quantum spatially projective iff it is (just) Wedderburn.



